Parametric Formulas for Villarceau Circles

Kurt Nalty
December 31, 2012

Abstract

At every point on a torus, four perfect circles intersect. Two of
these circles are the toroidal and poloidal circles commonly used for
coordinates on a torus. The other two circles are the Villarceau cir-
cles, created by slicing the torus at an angle bitangent to the interior
opening of the torus. These circles can be used as an alternative co-
ordinate system for the torus. These circles are also of technological
interest for high frequency, resonant, air core transformers.

Villarceau Circles

At every point on a torus, four perfect circles intersect. Two of these circles
are the toroidal and poloidal circles commonly used for coordinates on a
torus. The other two circles are the Villarceau circles, which are circles of
the same radius as the major radius R of the torus, tilted to the center plane
by a slope of +r/R and offset from the center by minor radius distance 7.

From David Burke and Wikipedia, we have a simple illustration of stan-
dard coordinates on a torus shown in Figure 1. These coordinates are often
called Tokamak coordinates, as the phrase "toroidal coordinates” usually
refers to a different sphere and ring coordinate system.

Many fine illustrations of Villarceau circles exist. Figure 2, by Lucas
Barbosa, shows the circles in red on a torus.

Lucas Barbosa has a nice animation on Wikipedia showing a slicing pro-
cess, and the resulting circles. Figure 3 is a cross-section taken from his
animation.

My favorite is a POV contest award winner by Tor Olav Kristensen.

Figure 1: (David Burke - Wikipedia) Toroidal Direction Blue, Poloidal Di-
rection Red

My goal in this note, is to provide simple, explicit formula correlating
Cartesian, toroidal and Villarceau formulas.

My primary coordinate system will be Tokamak coordinates, 6 and ¢, as
illustrated in Figure 1.

Orient the toriod in the XY plane, with € beginning on the X axis and
increasing in a counter-clockwise direction as seen from the positive Z axis.
Let R represent the major axis, r the minor axis, and p be the distance of the
point from the Z axis. Define the poloidal angle ¢ as zero at the maximum
radial distance, and increasing initially in the positive Z direction.

We find the cartesian coordinates to be

= R+ rcos(¢)
pcos(f)
psin(0)
sin(9)

Working backwards from z,y, and z, we have

v R D
I

0 = atan2(y,z)

¢ = atan2(z,\/22+y>— R)

Figure 2: (Lucas Barbosa - Wikipedia) Villarceau Circle On Torus

Figure 3: (Lucas Barbosa - Wikipedia) Sliced Torus

o 3 | e e

Figure 4: One Family of Villarceau Circles by Tor Olav Kristensen

First Villarceau Family Coordinates

The Villarceau circles are of radius R, offset from the origin by r, and tilted
by angle & sin~*(r/R). This tilted circle is then rotated around the Z axis by
angle 1 to sweep the family of curves associated with that particular tilt sign.
Any spot on the torus can be specified by an angle along the circle v(which
turns out to be ¢), and the angle . In a sense, I have three coordinates
along the surface of the torus, being tokamak coordinates, and 'right hand’
and ’left hand’ Villarceu circles.

As mentioned above, the poloidal angle ¢ from tokamak coordinates and
the angle along the tilted circle v can be chosen to coincide, resulting in the
z coordinate being

a = sin"'(r/R) tilt angle

z = rsin(¢)
= Rsin(y)sin(a) = Rsin(y)(r/R) = rsin(y)
v =9

The inverse sine has two solutions over 0 to 180 degrees. In this case, we
have chosen the first solution. For the second family, we will find we need
the second solution.

For the x and y coordinates, I usually obtain their value in two steps. I
first find coordinates on the simple tilted circle, then rotate those coordinates
to obtain the actual values. For the first family, I offset the circle by r in the
positive x direction.

a = sin"!(r/R) tilt angle
xy = 1+ Rcos(y)

y1 = Rsin(y)cos(a)

z1 = Rsin(y)sin(a) = rsin(y)

xo = x=x1c08(¢) — yysin(e)
y2 = y = x18in(¢v) + yy cos(y)
g = Z=7T Sin(’y)

Now, given x, y and 2z, how do we recover v and ¥? It turns out to be
fairly easy. As v and ¢ coincide, we have

v = atan2(z,v/z?2+y>— R)

Knowing v, R and r, we can calculate z; and ;.

r1 = 1+ Rcos(y)
y1 = Rsin(y)cos(a)

Knowing xy, y1, and given x5 = x, and y, = y, we can then solve the
equations

xe = x7cos(v) — yysin(v)
Y2 = a1sin(y) + yi cos(v)

for cos(¢) and sin(¢). Equivalently, using our expressions for cross product
and dot product of two vectors, we achieve the same result,

¢ = atan2(x1ys — Loy, T102 + Y1Y2)

Second Villarceau Family Coordinates

The second Villarceau family is found fairly similar to the first. The initial
circle is now offset in the negative x direction.

r1 = —r+ Rcos(y)

The inverse sine has two solutions over the span 0 to 180 degrees. This
time, we use the second solution relating v and ¢.

a = sin"'(r/R) tilt angle

z = rsin(¢)
= Rsin(y)sin(a) = Rsin(y)(r/R) = rsin(y)
7= T/2-¢

For the x and y coordinates, I usually obtain their value in two steps. I
first find coordinates on the simple tilted circle, then rotate those coordinates
to obtain the actual values. For the first family, I offset the circle by r in the
positive x direction.

a = sin"!(r/R) tilt angle
ry = —r+ Rcos(y)

y1 = Rsin(y) cos(a)

z1 = Rsin(y)sin(a) = rsin(y)

ro = x=x1c08(¢) — yysin(e)
y2 = y = x18in(v) + y; cos()
g = Z=7T Sin(’y)

Now, given x, y and 2z, how do we recover v and ¥? It turns out to be
fairly easy. As v and ¢ coincide, we have

v = atan2(z,v/z?2+y>— R)

Knowing v, R and r, we can calculate z; and y;.

r1 = 1+ Rcos(y)
y1 = Rsin(y)cos(a)

Knowing xy, y1, and given x5 = z, and y, = y, we can then solve the
equations
xe = mxpcos(vh) — ypsin(e)
Yo = arsin(y) + yi cos(y)

for cos(¢) and sin(¢). Equivalently, using our expressions for cross product
and dot product of two vectors, we achieve the same result,

¢ = atan2(xiys — Toy1, 172 + Y1)

Listing of Villarceau.c

As a numerical illustration of the above, here is a (mangled) listing of a
demonstration program in ¢, available at
http://www.kurtnalty.com/Villarceau.c

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int main(void)

{

int 1i,j,k;

double x,y,z,x1,y1,z1,x2,y2,22;

int phid, thetad, gammad, psid; // integer degree angles
double phi, theta, gamma, psi;

double pi = 3.1415926;

double tilt, alpha;

double gammal, gamma2;

double relative_error_squared; // actually, relative_error_squared
double r2;

double R =
double r =

o e

= O,
oS O

double rho;
float a;
double xref, yref, zref;

FILE* Output;

OQutput = fopen("toroid.xyz","w");
r = 1.0; // minor radius
R = 5.0; // major radius

// draw 24 minor radial rings

for (i=0;i<24;i++) {

theta = (i*pi)/(12.0);

printf("i = %d Theta = %g \n",i,theta);

phi = 0.0;

z = r*sin(phi);

rho = R + r*xcos(phi);

x = rhoxcos(theta);

y = rho*sin(theta);

fprintf (Qutput,"%g %g %g O \n",x,y,z);

for (j=1;j<25;j++) {
phi = (j*pi/12.0);

z = rxsin(phi);

rho = R + r*cos(phi);

x = rhoxcos(theta);

y = rho*sin(theta);

fprintf (Output,"%g %g %g 30 \n",x,y,z);
+

+

// draw 24 major radial rings

for (i=0;i<24;i++) {

phi = (i*pi)/(12.0);

printf("i = %d Theta = %g \n",i,theta);
theta = 0.0;

10

// moveto

// moveto

z = r*sin(phi);

rho = R + r*xcos(phi);

x = rhoxcos(theta);

y = rho*sin(theta);

fprintf (Output,"%g %g %g O \n",x,y,z); // moveto

for (j=1;j<25;j++) {

theta = (j*pi/12.0);

z = r*sin(phi);

rho = R + r*xcos(phi);

x = rhoxcos(theta);

y = rho*sin(theta);

fprintf (Qutput,"%g %g %g 90 \n",x,y,z); // moveto

b

phid = 30.0;

thetad = 0.0;

printf("\nPlease enter phi (degrees) ");
scanf ("%d",&phid) ;

printf ("\nPlease enter theta (degrees) ");
scanf ("%d",&thetad) ;

phi = phid*pi/180.0;

theta = thetad*pi/180.0;

// knowing R, r , theta, and phi, we calculate x, y, and z
z = r*sin(phi);
rho = R + rxcos(phi); //distance from z axis

X = rho*COS(theta);
y = rho*Sin(theta);

11

xref = x;
yref = y;
zref = z;

printf("x = %g y =% z =% \n",x,y,2);

// given x, y, z calculate phi and theta

theta = atan2(y,x);
phi = atan2(z, (sqrt(x*x + y*y) - R));
printf ("recalculated from x, y, z, we have (degree)\nphi = Yg theta = 7%g \n\i

[/ Fkskokskok ok sk ok sk ok ok p]_ot the hoop and rj_ng for phi and theta kkskskkskskkskskkkkkkkxk

double phiref = phi;
double thetaref = theta;

phi = 0.0;

theta = thetaref;

z = rxsin(phi);

rho = R + r*xcos(phi);

x = rhoxcos(theta);

y = rho*sin(theta);

fprintf (Output,"%g %g %g O \n",x,y,z); // moveto

for (j=1;j<25;j++) {

phi = (j*pi/12.0);

z = rxsin(phi);

rho = R + r*xcos(phi);

x = rhoxcos(theta);

y = rho*sin(theta);

fprintf (Qutput,"%g %g ‘g 160 \n",x,y,z); // moveto

i
phi = phiref;

12

theta = 0.0;

z = rxsin(phi);

rho = R + r*cos(phi);

x = rhoxcos(theta);

y = rho*sin(theta);

fprintf (Output,"%g %g %g O \n",x,y,z); // moveto

for (j=1;j<25;j++) {

theta = (j*pi/12.0);

z = r*xsin(phi);

rho = R + r*xcos(phi);

x = rho*cos(theta) ;

y = rhoxsin(theta);

fprintf (Output,"%g %g %g 160 \n",x,y,z); // moveto

b

// >k >k 5k 3k 5k 5k 3k 3k 3k %k %k %k %k %k %k 5k 5k plot first Villarceau circle in purple sk 3k 3k sk ok 5k 5k >k sk sk >k 3k >k sk ok ok >k ok ok >k k>
printf ("\nFirst Villarceau circle is purple\n");

tilt = r/R;

alpha = asin(tilt);

phi = phid#pi/180.0;
theta = thetad#*pi/180.0;
gamma = phi; // easy

x2 = xref; // these are the called out point

y2 = yref;

z2 = zref;

x1 = r + Rxcos(gamma); // this is the vector prior to rotation
yl = Rxsin(gamma)*cos(alpha) ;

zl = r*sin(gamma) ;

psi = atan2(xlxy2 - x2*yl, x1*x2 + ylxy2); // recover the angle

13

printf ("Reference values x = %g y = %g z = '%hg \n",xref,yref,zref);
x2 = xlxcos(psi) - yl*sin(psi);

y2 = xl1xsin(psi) + yl*cos(psi);

z2 = z1;

printf ("Recovered values x = %g y =%g z = %g \n",x2,y2,z2);

// set the initial point for plotting the circle

gamma = 0.0;

x1 = r + R*cos(gamma) ;

y1 R*sin(gamma)*cos(alpha) ;
z1l = r*sin(gamma) ;

// rotate circle by angle psi around the x axis

x2 = xl*cos(psi) - ylxsin(psi);
y2 = xl1xsin(psi) + yl*cos(psi);
z2 = z1;

fprintf (Output,"%g %g %g O \n",x2,y2,z2); // moveto

for (j=1;3j<25;j++) {

gamma = (j*pi/12.0);

x1l = r + R*cos(gamma) ;

yl = R*sin(gamma)*cos (alpha) ;
z1 = r*xsin(gamma) ;

// rotate circle by angle psi around the x axis

x2 = xlxcos(psi) - yl*sin(psi);
y2 = xlxsin(psi) + ylx*cos(psi);
z2 = z1;

fprintf (Output,"%g %g %g 220 \n",x2,y2,z2); // lineto

by

14

[/ FExkxkokickxkokkokkkk Plot second Villarceau circle in orange kkskcksokskskoksokskskok

// We now look at the other Villarceau curve through this point.
printf ("\nThe second Villarceua circle is yelloish-orange\n");

tilt = r/R;

alpha = asin(tilt);

phi = phid#pi/180.0;
theta = thetad*pi/180.0;
gamma = pi - phi; // easy

x2 = xref; // these are the called out point

y2 = yref;

z2 = zref;

x1l = -r + Rxcos(gamma); // this is the vector prior to rotation
yl = R*sin(gamma)*cos(alpha);

zl = rxsin(gamma);

psi = atan2(x1*y2 - x2%yl, x1*x2 + yl*y2); // recover the angle

printf ("Reference values x = %g y = %g z = %g \n",xref,yref,zref);
x2 = xlxcos(psi) - yl*sin(psi);

y2 = xlxsin(psi) + yl*xcos(psi);

z2 = z1;

printf ("Recovered values x = %g y = %g z = %g \n",x2,y2,z2);

// set the initial point for plotting the circle

gamma = 0.0;

x1l = -r + Rxcos(gamma) ;
yl = R*sin(gamma)*cos(alpha);
zl = rxsin(gamma);

15

// rotate circle by angle psi around the x axis

x2 = xl*cos(psi) - ylxsin(psi);
y2 = xlxsin(psi) + yl*cos(psi);
z2 = z1;

fprintf (Output,"%g %g %g O \n",x2,y2,z2); // moveto

for (j=1;j<25;j++) {
gamma = (j*pi/12.0);

x1l = -r + Rxcos(gamma) ;
yl = R*sin(gamma)*cos(alpha);
z1l = r*sin(gamma) ;

// rotate circle by angle psi around the x axis

x2 = xlxcos(psi) - yl*sin(psi);
y2 = xl*sin(psi) + ylxcos(psi);
z2 = z1;

fprintf (Output,"%g %g %g 310 \n",x2,y2,z2); // lineto
}
fclose(Output);

b

16

