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Abstract

This is a paper looking at duality in three dimensional electromag-
netism, from the point of view of Geometric Algebra. I present the
standard Maxwell Equations, followed by a brief discussion of parity,
and the axial versus polar vector problems. I then present the stan-
dard dualities of electromagnetism, leading to the complex number
format for the Maxwell equations. Next is a presentation of geometric
algebra in three dimensional Euclidean space. I then finish with the
Maxwell equations translated into multivector format.

Standard Maxwell Equations

Conventional Maxwell equations [1] in SI units [6] are

~∇ · ~E =
ρe

ε
~∇ · ~B = 0

~∇× ~E = −∂
~B

∂t

~∇× ~B = µε
∂ ~E

∂t
+ µ~je

where µ is the magnetic permeability of space, ε is the electric permittivity
of space, and µε = 1/c2, where c is the speed of light.
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Extending the Maxwell equations to include magnetic monopoles, we have

~∇ · ~E =
ρe

ε
~∇ · ~B = µρm

~∇× ~E = −∂
~B

∂t
− µ~jm

~∇× ~B = µε
∂ ~E

∂t
+ µ~je

An irritating feature seen in classical mechanics and the Maxwell equa-
tions as shown above, is the requirement of two incompatible vector types,
being polar versus axial vectors.

Polar Versus Axial Vectors

Under a parity transformation, where all spatial coordinates change sign,
polar vectors change sign. Vectors, and electric fields are examples of polar
vectors.

By contrast, under a parity transformation, axial vectors, also known as
pseudovectors, remain unchanged. Cross products and magnetic fields are
examples of axial vectors.

This potentially confusing situation, where we have instrinsically incom-
patible vector types, is resolved in geometric algebra by the distinction be-
tween vector versus bivector elements.

Parity Properties of EM Elements

From Jackson [5], Table 6.1, we see that coordinates, velocity, linear momen-
tum, force, current density, electric field and the Poynting vector are polar
vectors.

We see that angular momentum, torque, and magnetic field are axial
vectors, due to the use of a cross product in their definitions.

In a similar fashion, we see electric charge density is a scalar, with no sign
change under parity transformation. By contrast, magnetic monopole charge
density is a pseudoscalar, changing sign with under parity transformation.
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The Cross Product is Not Recommended

We will find that the vector cross product, which takes two vectors and re-
turns a third vector normal to the two factors, to be a source of confusion.
In three dimensions, we can associate a vector as a unique (within a sign)
normal to a plane. In higher dimensions, we do not have this luxury. In-
stead, in higher dimensions, the product of two vectors will generally have
scalar (colinear component) and planar (transverse component) components.
In hindsight, the result of the cross product is a planar, two dimensional
entity, called a bivector in geometric algebra. Cross products are not recom-
mended. Instead, we can replace cross products with wedge products with
an associated trivector factor.

Duality in EM

Oliver Heaviside [2] noticed that the Maxwell equations retain their form
when suitably scaled magnetic and electric fields are interchanged.

Following is the extended Maxwell Equations, re-written to emphasis the
dualities c ~B → ~E and g → cq, with c = 1/

√
µε and z =

√
µ/ε.

~∇ · ~E = z (cρe)

~∇ ·
(
c ~B
)

= zρm

~∇× ~E = −1

c

∂(c ~B)

∂t
− µ~jm

~∇×
(
c ~B
)

=
1

c

∂ ~E

∂t
+ µ

(
c~je

)
In this format, we see clearly see that ct is a better fit than t, and c ~B is a
better fit than ~B.

Sir Joseph Larmor noted that Heaviside’s transformation matched a ninety
degree rotation of a complex number, and showed that a continous rotation
based upon a complex number format for the electromagnetic field also main-
tained the form of Maxwell equations, and allowed us to eliminate either
electric or magnetic charge by suitable choice of phase angle.

Larmor’s format defined ~F = ~E+ic ~B. The generalized Maxwell equations
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then become

~∇ · ~F = z (cρe + iρm)

~∇× ~F = i

(
1

c

∂ ~F

∂t
+ µ

(
c~je + i~jm

))

Geometric Algebra in 3D Euclidean Space

Three dimensional Euclidean geometrical algebra has a scalar (1), three vec-
tors (ex, ey and ez), three bivectors (exey, ezex, and eyez), and one trivector
(exeyez) defining the geometry. Multivector multiplication is associative, but
not necessarily commutative.

In 3D Euclidean space, by definition, the three vector elements individu-
ally square to +1.

ex ∗ ex = exex = 1

ey ∗ ey = eyey = 1

ez ∗ ez = ezez = 1

In contrast to the cross product, the product of different vector basis is an
anti-commutating bivector.

ex ∗ ey = exey = −eyex

ey ∗ ez = eyez = −ezey

ez ∗ ex = ezex = −exez

These bivectors square to -1, as illustrated by

(exey) ∗ (exey) = exeyexey

= −eyexexey

= −ey1ey = −eyey

= −1

The trivector exeyez squares to negative one, and commutes will all multi-
vector components. This trivector, mimicing the behavior of i, is commonly
written as I, sometimes as i, sometimes as j in the literature. In our case,
whenever I see an i in a parent equation prior geometric algebra, I will sus-
pect this to translate into the trivector in the post geometric algebra format.
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When I want to emphasize the correlation to older equations, I will use the
capital I = exeyez.

With our bivectors, I have a preference to use exey, eyez, ezex as the pre-
ferred order of products, which leads to component equations with obvious
dot product and couple terms.

In multiplication table format, the order-sensitive multiplication among
these elements, with prefactors on the left column and postfactors on top
row, is

1 ex ey ez exey ezex eyez exeyez

1 1 ex ey ez exey ezex eyez exeyez

ex ex 1 exey -ezex ey −ez exeyez eyez

ey ey −exey 1 eyez −ex exeyez ez ezex

ez ez ezex −eyez 1 exeyez ex −ey exey

exey exey −ey ex exeyez -1 eyez −ezex −ez

ezex ezex ez exeyez −ex −eyez -1 exey −ey

eyez eyez exeyez −ez ey ezex −exey -1 −ex

exeyez exeyez eyez ezex exey −ez −ey −ex -1

In this algebra, scalar multiplication is commutative and associative, basis
vectors square to scalar one, and the product of two vectors resulting in
a bivector is anti-commutative, associative, squares to negative one, and
trivector basis commute with everything, yet square to negative one.

Much of the time, rather than work on a component level basis, I will
use a higher level notation representing a generic multivector as the sum of a
scalar, vector, bivector and trivector. This is no different conceptually than
representing a complex number as a sum of a real and imaginary component.
My generic multivector is

MV = q + ~v + B + T

where q is the scalar portion (such as charge), ~v (lower case, overarrow) is the
vector portion, B (bold uppercase) is the bivector portion, and T (regular
uppercase) is the trivector portion.
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Parity of Multivector Elements

For our three dimensional, Euclidean space, we have scalars as parity in-
variant, meaning even parity like electric charges, vectors as odd parity (like
electric fields), bivectors with even parity (like magnetic fields), and trivec-
tors with odd parity (like magnetic monopoles).

Wedge Product

The wedge product is the anti-symmetric product as seen in the product of
different vector basii above.

ex ∧ ey = −ey ∧ ex

ex ∧ ey ∧ ez = −ex ∧ ez ∧ ey

Being anti-symmetric, any squared terms will result in a zero product.

ex ∧ ex = 0

Historically, Clifford defined the geometric product of two vectors as a
combination of the dot product and wedge.

~a~b = ~a ·~b+ ~a ∧~b

In the following paragraphs, we will see the wedge product as the superior
replacement for the cross product.

Duality and the Pseudoscalar

We have a built-in duality in 3D Euclidean geometric algebra. We notice
one scalar component, one trivector component, three vector components,
and three bivector components. In essence, we have an axis of symmetry
between the vectors and bivectors, and can make a one to one association
between components on either side.

q ↔ T

ex ↔ eyez

ey ↔ ezex

ez ↔ exey
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As we examine this in more detail, we notice that multiplying a multivector
by exeyez effects just this transformation. Under a parity transformation,
where we invert the sign of each our our spatial basii, the trivector exeyez

changes sign. Consequently, we associate the trivector with pseudoscalars,
and often call the trivector as the pseudoscalar. In the extended Maxwell
equations, electric charge is a scalar, while magnetic charge is a pseudoscalar.

We now introduce our replacement for the cross product in three dimen-
sions. The standard cross product and wedge are

~a = axex + ayey + azez

~b = bxex + byey + bzez

~a×~b = ex(aybz − azby) + ey(azbx − axbz) + ez(axby − aybx)

~a ∧~b = eyez(aybz − azby) + ezex(azbx − axbz) + exey(axby − aybx)

(exeyez)~a ∧~b = (exeyez)eyez(aybz − azby) +

(exeyez)ezex(azbx − axbz) +

(exeyez)exey(axby − aybx)

= −ex(aybz − azby)− ey(azbx − axbz)− ez(axby − aybx)

~a×~b = −(exeyez)~a ∧~b

Using I = exeyez, we see by inspection

~a×~b = −I~a ∧~b

The wedge product creates a bivector, while the product with the pseu-
doscalar converts the bivector to a vector. That said, a word of caution is
in order. Many times, the use of the cross product caused an ambiguity be-
tween vector and bivector terms. Literally applying the formula above will
preserve that confusion, which usually is not what we want. Most often, we
really want to replace the cross product with the wedge, and thus separate
out the bivectors from the vectors.

Nilpotents and Idempotents

Nilpotents and idempotents are structures in geometric algebra which can
lead to amazing simplications in calculations.

Nilpotents are defined as multivectors which square to zero.

N ∗N = 0
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. In multivector format, nilpotents are characterized by zero values for scalar
and pseudoscalar, with vector and bivector components of equal magnitude,
yet orthogonal to each other. With unit vector ~u and ~v orthogonal, and k an
arbitrary scale factor, a generic nilpotent has the form

z = k(~u+ ~u~v)

.
Idempotents are defined as multivectors which square to themselves.

P ∗ P = P

. As an example, the simple scalars, 0 and 1 are idempotents.
Multivector idempotents (other than the 0 and 1 above) are characterized

by a zero value for the trivector component, a value of 1/2 for the scalar com-
ponent, orthogonality between the vector and bivector components, and the
magnitudes of the vector and bivector component matching the hyperbolic
function scaling shown below.

Multivector idempotents come in pairs. The two unit vectors ~u and ~v in
the definitions below must be orthogonal, meaning ~u~v = −~v~u. Notice also
that the product of these idempotent pairs is zero.

P+ =
1

2
(1 + (~u cosh (α) + ~u~v sinh (α))) = P

P− =
1

2
(1− (~u cosh (α) + ~u~v sinh (α))) = (1− P )

P+P− = 0

Nilpotents and idempotents are closely related.

P± = ~vz±

z± = ~vP±

=
1

2
(~v ± ~v~u cosh(α)∓ ~u sinh(α))

Maxwell Equations in 3D Geometric Algebra

With this all said and done, we now return to our complexified, extended
Maxwell equations.
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~F = ~E + ic ~B
~∇ · ~F = z (cρe + iρm)

~∇× ~F = i

(
1

c

∂ ~F

∂t
+ µ

(
c~je + i~jm

))

We see the imaginary element i, and get excited. Clearly, the field ~F
should become a multivector field F , with vector component ~E and bivector
component cB.

F = ~E + cB

We note in passing, that F definitely can have a nilpotent component, and
even be totally nilpotent, under the right conditions.

In the dot product term, we see scalar components for electric charge,
and pseudoscalar components for magnetic charge. Here we simply replace i
with our trivector I = exeyez.

~∇ · F = z (cρe + (exeyez)ρm)

Finally, we look at the cross product term. Blindly substituting for the
cross product using ~∇× ~F = −I ~∇∧ ~F , and replacing i with I yields

~∇× ~F = I

(
1

c

∂ ~F

∂t
+ µ

(
c~je + I~jm

))

−I∇∧ F = I

(
1

c

∂F

∂t
+ µ

(
c~je + I~jm

))
∇∧ F = −

(
1

c

∂F

∂t
+ µ

(
c~je + I~jm

))
1

c

∂F

∂t
+∇∧ F = −µ

(
c~je + (exeyez)~jm

)

This interesting equation states that current creates a field gradient in the
time direction, and twists the field in the spatial directions.

While this equation is interesting, it does not match standard form, as it
only uses a wedge product, rather than the full geometric product. To get
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standard form, we exploit ∇F = ∇ · F + ∇ ∧ F , and simply add ∇ · F to
both sides of the equation.

1

c

∂F

∂t
+∇∧ F = −µ

(
c~je + (exeyez)~jm

)
1

c

∂F

∂t
+∇∧ F +∇ · F = ∇ · F − µ

(
c~je + (exeyez)~jm

)
1

c

∂F

∂t
+∇F = ∇ · F − µ

(
c~je + (exeyez)~jm

)

Now,

∇ · F = ∇ · (E + IcB)

= ∇ · E + Ic∇ ·B
= zcρe + Izρm

Consequently, we retrieve the standard form as found in Chappell [7]

1

c

∂F

∂t
+∇F = ∇ · F − µ

(
c~je + (exeyez)~jm

)
(

1

c

∂

∂t
+∇

)
F = (zcρe + Izρm)− µ

(
c~je + (exeyez)~jm

)
We now follow the derivation of Chappell and company [7], and then find

agreement with the formula above. Repeating Maxwell’s extended equations,

~∇ · ~E = z (cρe)

~∇ ·
(
c ~B
)

= zρm

~∇× ~E = −1

c

∂(c ~B)

∂t
− µ~jm

~∇×
(
c ~B
)

=
1

c

∂ ~E

∂t
+ µ

(
c~je

)
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We multiply equations 3 and 4 by I to convert cross product to wedge.

~∇ · ~E = z (cρe)

~∇ ·
(
c ~B
)

= zρm

I ~∇× ~E = −I
c

∂(c ~B)

∂t
− Iµ~jm

I ~∇×
(
c ~B
)

=
I

c

∂ ~E

∂t
+ Iµ

(
c~je

)
Notice we are still treating ~B as a vector. Our wedged set of equations are

~∇ · ~E = z (cρe)

~∇ ·
(
c ~B
)

= zρm

∇∧ ~E = −I
c

∂(c ~B)

∂t
− Iµ~jm

∇∧
(
c ~B
)

=
I

c

∂ ~E

∂t
+ Iµ

(
c~je

)
The geometric product of two vectors is ~a~b = ~a ·~b + ~a ∧~b. Applying this to
our differential operators

∇ ~E = ∇ · ~E +∇∧ E
We notice that adding equations 1 and 3, 2 and 4 exploits this relationship
to eliminate the dot and wedge products.

∇ ~E = z (cρe)−
I

c

∂(c ~B)

∂t
− Iµ~jm

∇
(
c ~B
)

= zρm +
I

c

∂ ~E

∂t
+ Iµ

(
c~je

)
In the above, we are treating ~B as a vector. We now shift B to a bivector
by absorbing a factor of I in the first equation, and multiplying the second
equation by I.

∇ ~E = z (cρe)−
1

c

∂(Ic ~B)

∂t
− Iµ~jm

∇
(
Ic ~B

)
= Izρm −

1

c

∂ ~E

∂t
− µ

(
c~je

)
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Adding these two equations, we have

∇
(
~E + Ic ~B

)
= z (cρe)−

1

c

∂(Ic ~B)

∂t
− Iµ~jm + Izρm −

1

c

∂ ~E

∂t
− µ

(
c~je

)
= −1

c

∂

∂t

(
~E + Ic ~B

)
+
(
zcρe − µc~je

)
+ I

(
zρm − µ~jm

)
Transposing the partial time derivative, we obtain(

1

c

∂

∂t
+∇

)(
~E + Ic ~B

)
=

(
zcρe − µc~je

)
+ I

(
zρm − µ~jm

)
In the absense of magnetic monopoles (ρm = 0,~jm = 0), we have the same
expression as in the Chappell paper.

Duality Using Geometric Algebra on Maxwell

Equations

We are now in a position to repeat the observations of Heaviside and Larmor.
If we multiply our equation on both sides by I, we obtain(

1

c

∂

∂t
+∇

)(
~E + Ic ~B

)
=

(
zcρe − µc~je

)
+ I

(
zρm − µ~jm

)
(

1

c

∂

∂t
+∇

)(
I ~E − c ~B

)
= I

(
zcρe − µc~je

)
−
(
zρm − µ~jm

)

We have the same basic structure of the Maxwell equations, but we have
interchange E and B as far as vector versus bivector. Likewise, we have
changed the source charges nature, per scalar versus pseudoscalar.

Following the observation of Joseph Larmor, we can implement a con-
tinous mixing of electric and magnetic fields. In 3D Euclidean geometric
algebra, both scalar and trivector terms commute with all other algebra ele-
ments. We can thus apply a complex scale factor of (cos θ + I sin θ) to both
sides of our equation.
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(
1

c

∂

∂t
+∇

)(
~E + Ic ~B

)
=

(
zcρe − µc~je

)
+ I

(
zρm − µ~jm

)
F ′ =

(
(cos θ + I sin θ)

(
~E + Ic ~B

))
= (cos θ ~E − c sin θ ~B) + I(sin θ ~E + c cos θ ~B)(

1

c

∂

∂t
+∇

)
F ′ =

(
zcρe − µc~je

)
(cos θ + I sin θ)

+I
(
zρm − µ~jm

)
(cos θ + I sin θ)(

1

c

∂

∂t
+∇

)
F ′ =

(
zcρe − µc~je

)
cos θ −

(
zρm − µ~jm

)
sin θ

+I
[(
zcρe − µc~je

)
sin θ +

(
zρm − µ~jm

)
cos θ

]
Once again, we maintain the form of the Maxwell equation, and we allow
continuous mixing of electric and magnetic charge.

Julian Schwinger [4] took this concept of mixing angle one step further.
Postulating coexisting magnetic and electric charge in a fundamental particle,
he points out that as long as the ratio of magnetic versus electric charge
does not change, the magnetic and electric current densities will likewise be
proportional, and that we can choose a convention for the mixing angle such
that magnetic charge, corresponding to the trivector term on the right hand
side, seems to disappear.
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