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Abstract

David Hestenes [5] , Chris Doran [4], Anthony Lasenby, and others
have implemented the Dirac equation for the the relativistic electron
in geometric algebra. David Hestenes, in particular, has shown how
the geometric algebra view provides insight into electron motion.

This note starts with Dirac’s development, then repeats the geo-
metric algebra translation using a (-,-,-,4) signature. Finally, the same
translation is carried out using a (4,4,+,-) signature. The result is a
purely real multivector Dirac Equation with no imaginaries.

Classical Mechanics to Quantum Mechanics

In quantum mechanics, energy and momentum become operators acting on
a wavefunction
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Using the classical mechanics relationship between energy and momen-
tum, we obtain the Schrodinger equation.
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The Schrodinger equation did not provide electron spin, nor was the equation
relativistically invariant. Pauli extended the Schrodinger equation to include
spin, but the model was still non-relativistic.

Schrodinger, Gordon and Klein developed an approach which used the rel-
ativistic energy momentum equation and the quantum operators as a model.
The resulting Klein-Gordon equation, using ¢ instead of 1, is
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This equation, when ¢ is interpreted as probability density rather than charge
density, suffered the defects of negative values for probability and energy, and
was dismissed as unsatisfactory for describing the electron by Schrodinger
and Dirac.

Dirac expected time and space would appear in relativistic quantum me-
chanics as first order linear differential operators. The Klein-Gordon equa-
tion, being second order, was not the correct form. Schrodinger’s equation,
in a sense, is a linear approximation to a square root of the Klein-Gordon
equation, but is not relativistic. The correct approach, Dirac reasoned, would
be to write the Klein-Gordon equation as the square of the correct linear op-
erator form. This linear form, rather than the Klein-Gordon equation, would
then be the correct basis for relativistic quantum mechanics.

The prototype, using the energy momentum operator expression, for free
space is

By measuring time in meters, we reduce clutter by setting ¢ = 1. We also
write our momentum square term as the sum of the components in cartesian
coordinates.
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Dirac now introduced four scale factors for our four spacetime components,
and developed the square.
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Knowing that rotations in three dimensional space and higher are order sen-
sitive, Dirac maintained the order of products as he developed the square.

(AE + Bp, + Cp, + Dp,)> = AEAE + AEBp, + AECp, + AEDP,
+Bp. AE + Bp,Bp, + Bp.Cp, + Bp,Dp.
+Cp,AE + CpyBp, + Cp,Cp, + Cp, Dp,
+Dp.AE + Dp.Bp, + Dp.Cp, + Dp.Dp.

(AE + Bp, + Cp, + Dp.)* = AEAE + Bp,Bp, + Cp,Cp, + Dp.Dp.
+(AEBp, + Bp,AE) + (AECp, + Cp,AE)
+(AEDp, + Dp,AE) + (Bp,Cp, + Cp,Bp.)
+(Bp.Dp- + Dp.Bp,) + (Cp,Dp. + Dp.Cp,)

In the expression above, E, p,, p, and p, are pure numbers, and commute

with all basis. However, A, B, C' and D are directional elements. Moving
scalar terms to the front of each expression, Dirac wrote

(AE + Bp, + Cp, + Dp.)* = E’AA+p’BB+p.CC +p2DD
+Ep,(AB+ BA) + Ep,(AC + CA)
+Ep.(AD + DA) + p,p,(BC + CB)
+pep-(BD + DB) + pyp.(CD + DC)

To achieve his square, Dirac required

AA =1

BB = -1
cCc = -1
DD = -1
AB = —BA
AC = —CA
AD = —-DA
BC = —-CB
BD = -DB
CD = -DC



Dirac Matrices

Dirac, at this point, assigned matrices to the quantities A through D, without
speculating on the meaning of these terms.

10 0 0
01 0 0
0 _
A=7""=100 -1 0
00 0 -1
0 0 0 1
L 0 0 10
B=v = 0 -1 0 0
1 0 00
0 0 0 —i
o, 0 04 0
C=~" = 0 i 0 0
i 00 0
0 01 0
0 00 —1
I B
D=v"=1 4190 o
0 10 0

Using the gamma notation, the Klein Gordon, then Dirac equations can
be written
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Implementing the quantum operators, we have the free space Dirac equation.
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Matrix and Component Level Equations

At this point, I like to write out the matrix form, then component level form

for the Dirac equation.
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The straight forward equation transcription is
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The imaginary terms in 7? and i9/0y have always annoyed me. They seem

caprious at best, or wrong with other compensating errors at worst.

In

reality, this seems to be just one of many workable representations. I believe
I have a better representation shown in a later section.
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Minkowski Space-Time Algebra (-,-,-,4)

Ignoring the matrix representation, and looking purely at the Dirac squaring
requirements, David Hestenes and company see a four dimensional Minkowsli
Space Time Algebra with signature (-,-,-,+), where time has a positive signa-
ture, and the three space axii have a negative signature. The wavefunction 1,
traditionally a four component complex vector, maps to the even rank com-
ponents of the space time algebra, per Doran [4], page 282. Doran makes the
mapping explicit in [6], page 102.

The beauty of this assignment is complete compatiblity with existing
quantum mechanical literature. The algebra is the same, the symbols are
the same. All that has changed is a replacement of a matrix implementation
by a geometric algebra implementation, which allows a more geometrical
investigation of quantum models. This approach reduces the likelihood of
immediate rejection by scholars invested in standard quantum notation.

Minkowski Space-Time Algebra (+,+,4+,-)

I, personally, have no strong attachment to the established quantum notation.
Given freedom to choose notation, I greatly prefer the (4,+,+,-) metric for
two reasons. First, standard three dimensional Euclidean space has a metric
of (+,+,+). I prefer to carry this signature into spacetime, and allow the
negative metric to be assigned to the time axis. The second reason deals
with the nature of 4x4 matrix representations of geometric algebra. I have a
set of sixteen real matrices, which orthogonally span the 4x4 matrix space,
which are twelve way isomorphic to Minkowsi algebra with the (+,+,+,-
) signature. However, I have not found a set of 4x4 matrices for (-,--,+)
signature or (+4,+,+,+) signature. This strongly encourages me to use the
(+,+,+,-) signature.

The use of the classic Minkowski signature is going to result in a change of
notation for quantum mechanics. This will cause resistance in the established
notation community. However, in this case, I believe change is good.

Start by revisiting the free space, no EM field Dirac equation. We slide



the ¢ from the operator to be a factor associated with the ~ basis.
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In one stroke, we have accomplished two great things. We have defined
a set of basis vectors which have the desired (+,+,+,-) signature, and we
have eliminated a spurious imaginary from the Dirac equation. I am sure my
notation will change over time, but I currently suggest using upper case I'
for the new system of basis.

M’ = ¢y’
't = iyt
I = i
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Using this notation, we can re-arrange the Dirac equation a bit.
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This last equation is a real multivector version of the Dirac equation,
showing significant resemblance to a continuity equation in four space.

Explicit I' Matrices

As mentioned earlier, I have twelve implementations of the Minkowski geo-
metric algebra using 4x4 real matrices. One implementation of these matrices
is shown below. I have not formed opinions on the canonical ordering of the
terms in the bivector, trivector and quadvector products. The details of sign
for these matrices vary depending upon factor order. As long as one is con-
sistent, results of calculations should match despite convention differences.
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Nicely Typeset Gamma Matrices

01 0 0 10 0 0
10 0 0 01 0 0
11 _ T2 __ 173 _
==190 0o 1| == g o010 "=
00 -1 0 00 0 1
00 0 -1
00 —1 0
170 __
a=1"=101 0 o0
10 0 0

The higher order multivector basis are formed by order sensitive matrix mul-
tiplication. The resulting sixteen matrices, shown later, form a complete set
for 4x4 real matrices. For any 4x4 matrix, I can collect the set of sixteen
scale factors for each multivector component by dotting each basis to the
matrix of interest, and dividing by four. The full list of sixteen matrices with
multiplication table is shown on the next page.

Matrix and Component Level Equations in New Basis

We now write out the matrix and component equations for this new notation.
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Implementation #1

(P1) | (P1) (+a) (+b) (+c) (+E) (+A) (-B) (+C) (-g) (-h) (i) (+D) (-f) (+e) (-d) (-F)
(+a) | (+a) (P1) (+A) (-B) (-g) (+b) (+c) (+D) (+E) (-f) (+e) (+C) (-h) (-i) (-F) (-d)
(+b) | (+b) (-A) (P1) (+C) (-h) (-a) (-D) (+c) (+f) (+E) (-d) (+B) (+g) (+F) (-i) (-e)
(+c) | (+c) (+B) (-C) (P1) (i) (+D) (-a) (-b) (-e) (+d) (+E) (+A) (-F) (+g) (+h) (-f)
+E) | (+E) (+g) (+h) (+i) (M1) (-£) (+e) (-d) (+a) (+b) (+c) (+F) (-A) (+B) (-C) (+D)
(+8) | (+A) (-b) (+a) (+D) (-f) (M1) (-C) (-B) (+h) (-g) (-F) (-c) (-E) (+d) (+e) (+i)
(-B) | (-B) (-c) (-D) (+a) (+e) (+C) (M1) (-A) (+i) (+F) (-g) (+b) (-d) (-E) (+f) (-h)

I
I
I
|
I
I
I
(+#C) | (+C) (#D) (-c) (+b) (-d) (+B) (+A) (M1) (-F) (+i) (-h) (-a) (-e) (-f) (-E) (+g)
| .
I
I
I
I
I
|
I

(-g) | (-g) (-E) (+£) (-e) (-a) (-h) (-i) (-F) (P1) (+A) (-B) (+d) (-b) (-c) (-D) (+C)
(-h) | (-h) (=) (-E) (+d) (-b) (+g) (+F) (1) (-A) (P1) (+C) (+e) (+a) (+D) (-c) (+B)
(-1) | (-1) (+e) (=d) (-E) (-c) (-F) (+g) (+h) (+B) (-C) (P1) (+f) (-D) (+a) (+b) (+A)
(+D) | (+D) (+C) (+B) (+A) (-F) (-c) (+b) (-a) (-d) (-e) (-f) (M1) (+i) (-h) (+g) (-E)
(-£) | (-£) (-h) (+g) (+F) (-A) (-E) (+d) (+e) (-b) (+a) (+D) (i) (P1) (+C) (+B) (-c)
(+e) | (+e) (-1) (-F) (+g) (+B) (-d) (-E) (+f) (-c) (-D) (+a) (+h) (-C) (P1) (+A) (+b)
(=) | (=) (+F) (i) (+h) (-C) (-e) (-f) (-E) (+D) (-c) (+b) (-g) (-B) (-A) (P1) (-a)
F) | (-F) (#d) (+e) (+f) (D) (+i) (-h) (+g) (+C) (+B) (+A) (4+E) (+c) (-b) (+a) (M1)

Unity xyzt
[1 0 0 0] [0 1 0 0]
[o 1 0 0] [-1 0 0 0]
[0 0 1 0] L0 0 O 1]
[o o 0 1] Lo 0-1 0]

X y z t
(o1 0 00[-1 0 o0 o0°[0oO0O0 11]LO0 0 0-1]
(1 0 0 0J[o 1 0o o0 [0 o0 1 0[O0 0-1 0]
(o 0o 0-11[0 0-1 01 [0 1 0 0 [0 1 0 0]
(o 0-1 00 0 0 11][1 0 0 0o [1 0 O O]
Xy Xz yz Xt yt zt

(o1 0o0floo0o1o0of0o0o0-11LO0 O0-1 o010 00 111 0 0 0]
[<-1 0 0 0J IO OO 1] [0 0 1 0[O0 O0 O0-11LO0 O-1 01T[0 1 0 O]
o o o-1[1 o0 o0 o0o[0-1 0 o0 ([1 0 o0 O0C[0-1 0 o0TL[0 0-1 0]
(o0 0t oJ[O0O-1 0 0 [1 0O O0O[O0O-1 0 o0T[1 0 0 O0TL[O0 0 0-1]

Xyz Xyt Xzt yzt
o ot oflo 0-1 010 1 0 0 [-1 0 0 0]
(o o 0o-110 0 o0 13 [1 0 0 0[O0 1 0 0]
[kt 0 0 0] [-1 0 0 00 LO O O 11 [0 O 1 O]
(01 0 00[0o 1 o0 o000 11 0[O0 0 0-1]



The new set of basis does not have the caprious ¢ terms associated with
the conventional Dirac equation. However, I am still annoyed by the zero
terms and doubled terms in this implementation. Similar features are in all
twelve implementations.

In this real matrix form, in the absense of electromagnetic fields, there
is no motivation for 1) to have complex values. We will shortly see that we
require fields to get the complex format, and that the fourspace pseudoscalar
plays the role of 7, changing our fourvector to a four component spinor.

Dirac Equation With Electromagnetic Fields

The previous sections dealt with the Dirac equation in the absense of elec-
tromagnetic fields. This is, of course, the simplest case, and a good starting
point. Now, we extend our energy and momentum terms to include electro-
magnetic fields ¢ and A.

Our canonical momentum becomes

P = qff—ihﬁ
L0
pr = qA; —ih—

ox

.0
Dy = qu—zha—y

L 0
P = qu_Zh&

Our canonical energy becomes

.0

Inserting these into the Dirac equation yields

(VB +7'pe +9%py +7°p:) 0 = Emi
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of _ 3 9 1 3 9 2 3 9 3 3 9 _
(7 ( qo + m@t) + (qAx zhax) + (qu zhay) + (qAZ Zh@z)) (0 +ma)
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- O_ - 1_ . 2_ o 3_ — 0 A1 A2 A3
ih (ﬂ 5 Vas Tog " az) 0 +my + (7090 — v'qA, — 7qAy — VP qA.) ¥
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Shifting to our I' matrices, we have

h (+r0% — rla% — FQa% — r3%) v = xmp—i(I%¢ —T'gA, —T?qA, —TPqA.) ¢
In Minkowski geometric algebra, the pseudoscalar corresponds to the product

IOT'T2I3. This term squares to minus one, but anti-commutes with I'?, T'!,

I'?, and I"®. Replacing 7 with T°T''I"™?I"® poses a concern about the order of
multiplication, whether the i is a prefactor or a postfactor. The ambiguity of ¢

as a prefactor or postfactor does give us a sign choice we need to later resolve.
Consequently, I place another + on the front of the ¢ term, independent of the

+ associated with the mass term. Personal opinion, I think this sign choice

will be non-observable, but I need to flag this topic here for later review.

0 0 o) 0
4T —T' = -T2 T3 ) oy = +map —i (I%¢ — TqA, — T%qA, — I3¢A,
= +myp £ TOTIT?3 (F0q¢ —TI'gA, — FQqu — FSqAZ) Y
= +my + (I'T°Tq¢p — I°T?TPgA, — I°T°T'gA, — TT'T¢A,) ¢

In this interpretation, the mass term will be multiplied by a unit matrix.
We now have a purely real, 4x4 multivector format for the Dirac equation
with electromagnetic fields. 1 will revise this shortly to show the explicit
matrix and component level equations.

Extending Wavefunction to Full Multivector

As has been remarked earlier, there are only eight components in the standard
Dirac wavefunction, while this multivector approach is delighted to support
sixteen. Rather than represent the wavefunction as a four component spinor,
I am eager to promote the wavefunction to full multivector status using real
4x4 matrices. I believe the even rank multivector components will give us
the standard Dirac electromagnetic interactions. I am hopeful that the odd
components will cheerfully present the electroweak interactions.

Conclusion

I find the Dirac equation can be implemented as a real multivector equation
using a Minkowski (+,+,4,-) metric.
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