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Abstract

The Frenet-Serret formulas in classical 3D analytic geometry define
a curve in terms of pathlength, curvature (deviation from a line) and
torsion (deviation from a plane). These formulas easily extend to
higher dimensions, with the addition of higher order curvatures. This
note takes these concepts of deviation, and uses geometric algebra to
find a surprisingly simple multivector which encodes the instantaneous
state of a curve.

Geometric Algebra versus Vector Algebra

Vector algebra, as developed by Hamilton, Gibbs and Heaviside, has wide
acceptance in the engineering and undergraduate physics areas, but has a
few, very interesting problems which indicate a lack of generality. The most
important is the distinction between polar vectors, such as momentum or
electric field, which change sign under a parity transformation (replacement
of x by -x, y by -y and z by -z), versus axial vectors such as angular momen-
tum, or magnetic field, which are invariant under a parity transformation.

In geometric algebra, this is recognized as being due to the confusion
between vectors, and their dual planar elements in three dimensional space.
Using the analogy of the hub and the wheel, we can see that rotation of the
wheel, being a planar relationship, can be correlated with an axle normal to
the plane of rotation. For example, rotation in the xy plane can be associated
with an axle along the z axis.
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The cross product only applies in three-space, and is the source of major
confusion. Instead of the cross product, geometric algebra, as developed by
Hermann Grassman Sr., William Clifford, and David Hestenes, suggests the
use of the wedge product.

The wedge product, is an associative, anti-commutative product between
basis vectors, where the product is zero if the two vectors are colinear. How-
ever, if the two vectors are not colinear, the product is a planar composite.

Wedge products of basis vectors anti-commute: e1 ∧ e2 = −e2 ∧ e1. This
implies vectors self-wedge to zero. e1 ∧ e1 = 0.

Higher order wedge products define oriented volumes, hypervolumes, and
so forth, up to the limit of the dimensionality of the space. In the higher
products, all multiplication is associative: (e1e2)e3 = e1(e2e3). Due to the
freedom in the ordering of terms, we need to pay attention to the ordering
used by different authors when comparing products.

Left Hand Frenet-Serret Formulas in 3D Space

The Frenet-Serret formulas parameterize a curve using pathlength, and spec-
ify the curve using signed scalar curvature (a measure of deviation from a
line) and signed scalar torsion (deviation from a plane), with a local orthono-

mal (left hand) frame with unit tangent ~u, normal ~n, and binormal ~b. The
left hand coordinates have a simpler sign convention, especially in higher
dimensions, than a right hand coordinate frame.

Using a left-handed local frame with unit tangent ~u , unit normal ~n, and
unit binormal ~b,

(ds)2 = d~r · d~r
d~r

ds
= ~u

d~u

ds
= κ~n

d~n

ds
= τ~b− κ~u

d~b

ds
= −τ~n
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Left Hand Frenet-Serret Formulas in 4D Space

The Frenet-Serret equations in left hand format for four dimensional space
(with w̃ as the trivector) are

dr̃

ds
= ũ

dũ

ds
= κñ

dñ

ds
= τ b̃− κũ

db̃

ds
= γw̃ − τ ñ

dw̃

ds
= −γb̃

The left hand sign convention has the next higher basis with a positive
sign in the right hand side of the derivative, while the previous lower basis
term has a negative sign.

Commentary on These Classical Forms

In the scalar format for the Frenet equations, the scalar curvature, torsion,
boost, and so on have units of inverse distance, or inverse radii of curvature
The pattern easily extends to higher dimensions, being a form of Gram-
Schmidt orthogonalization.

Given a starting point, and signed values for the curvatures, we can recre-
ate the trajectories.

Likewise, any two curves with the same history of curvature as a function
of distance are congruent.

Geometric Algebra and the Trajectory State

In three dimensions, geometric algebra multivectors consist of a scalar, vec-
tor, bivector and trivector components. The vector has three components
(x, y and z linear elements), the bivector three planar components (xy, xz
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and yz planar elements), and the trivector is a directed volume element (xyz
volume).

Let’s examine a proposed state multivector:

State = s+ ~u+

(
~u ∧ d~u

ds

)
+

(
~u ∧ d~u

ds
∧ d

2~u

ds2

)
= s+

d~r

ds
+

(
d~r

ds
∧ d

2~r

ds2

)
+

(
d~r

ds
∧ d

2~r

ds2
∧ d

3~r

ds3

)

The scalar portion is the distance along the curve. The vector portion is
the unit tangent. We note for future reference

s =

∫
ds =

∫
~u · d~r =

∫
d~r

ds
· d~r =

∫
(ds)2

ds

The bivector portion is the curvature bivector, with units of inverse dis-
tance. As ~u is a unit vector, it is normal to d~u/ds. The wedge product has
the same magnitude as Frenet κ, but is a bivector in the tangent/normal
plane.

(
d~r

ds
∧ d

2~r

ds2

)
= ~u ∧ d~u

ds

= ~u ∧ (κ~n) = κ (~u ∧ ~n)

When ~u and d~u/ds are colinear, their wedge product is zero, as expected
with zero curvature. At any non-zero curvature, the magnitude of the bivec-
tor is κ. Consequently, there is no ambiguity in calling this expression the
curvature bivector.

Now, let’s examine the trivector term. With primes indicating derivatives
by s, we find ~u∧ ~u′ ∧ ~u′′ has units of m−3, and is dimensionally incompatible
with the Frenet formula torsion. However, when deviation from a plane is
zero, this expression is zero. With a little bit of math, we find
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~u ∧ ~u′ ∧ ~u′′ =

(
~u ∧ d~u

ds
∧ d

2~u

ds2

)
= ~u ∧ (κ~n) ∧ d

ds
(κ~n)

= ~u ∧ (κ~n) ∧
(
dκ

ds
~n+ κ

d~n

ds

)
= ~u ∧ (κ~n) ∧

(
dκ

ds
~n+ κ

(
τ~b− κ~u

))

In the wedge product, squared vectors become zero. Consequently, in the
parenthesis terms on the right, we lose the ~u and ~n terms, and find

~u ∧ ~u′ ∧ ~u′′ = ~u ∧ (κ~n) ∧
(
dκ

ds
~n+ κ

(
τ~b− κ~u

))
= ~u ∧ (κ~n) ∧ κ

(
τ~b
)

= κ2τ(~u ∧ ~n ∧~b)

At the expense of abuse of terminology, and with the potential for user
frustration, I am quite willing to call this the torsion trivector, even though
it is not numerically the same as the Frenet torsion, but rather κ2 times the
Frenet torsion.

Summarizing, in three dimensions, our state is

State = s+ ~u+

(
~u ∧ d~u

ds

)
+

(
~u ∧ d~u

ds
∧ d

2~u

ds2

)
= s+ ~u+ κ(~u ∧ ~n) + κ2τ(~u ∧ ~n ∧~b)

Four Dimensions

In four dimensions, using a tilde to indicate four vectors rather than three
vectors, we have

State = s+ ũ+ (ũ ∧ ũ′) + (ũ ∧ ũ′ ∧ ũ′′) + (ũ ∧ ũ′ ∧ ũ′′ ∧ ũ′′′)
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Attemping a wedge of four terms in three space always yields a zero result,
so we don’t see the last term in 3D.

Our tangent has four components, x, y, z and t. Our curvature now has
six planar components, xy, xz, xt, yz, yt, and zt. We have four torsion
components, xyz, xyt, xzt, and yzt. We also have a pseudoscalar boost
component, xyzt.

We repeat the previous development, repeating the Frenet-Serret equa-
tions here for convenience.

dr̃

ds
= ũ

dũ

ds
= κñ

dñ

ds
= τ b̃− κũ

db̃

ds
= γw̃ − τ ñ

dw̃

ds
= −γb̃

We find the curvature, just as before.

ũ′ = κñ

(ũ ∧ ũ′) = κ(ũ ∧ ñ)

Now we find the torsion. Notice all the terms which drop out, due to the
wedge product. This is the same expression as found in the three dimensional
case, which is good.

ũ′′ = κ′ñ+ κñ′

ñ′ = τ b̃− κũ
ũ′′ = κ′ñ+ κ(τ b̃− κũ)

(ũ ∧ ũ′ ∧ ũ′′) = κ(ũ ∧ ñ) ∧
(
κ′ñ+ κ(τ b̃− κũ)

)
= κ2τ(ũ ∧ ñ ∧ b̃)
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Now we find the boost.

ũ′′′ = κ′′ñ+ 2κ′ñ′ + κñ′′

= κ′′ñ+ 2κ′(τ b̃− κũ) + κñ′′

ñ′′ = τ ′b̃+ τ b̃′ − κ′ũ− κũ′

= τ ′b̃+ τ(γw̃ − τ ñ)− κ′ũ− κ(κñ)

ũ′′′ = κ′′ñ+ 2κ′(τ b̃− κũ) + κ
[
τ ′b̃+ τ(γw̃ − τ ñ)− κ′ũ− κ(κñ)

]
In our wedge product, all the terms except the coefficient of w̃ disappear,

leaving

(ũ ∧ ũ′ ∧ ũ′′ ∧ ũ′′′) = κ2τ(ũ ∧ ñ ∧ b̃) ∧ (κτγw̃)

= κ3τ 2γ(ũ ∧ ñ ∧ b̃ ∧ w̃)

At this point, a clear pattern is forming.

State = s+ ũ+ (ũ ∧ ũ′) + (ũ ∧ ũ′ ∧ ũ′′) + (ũ ∧ ũ′ ∧ ũ′′ ∧ ũ′′′)

= s+ ~u+ κ (ũ ∧ ñ) + κ2τ
(
ũ ∧ ñ ∧ b̃

)
+ κ3τ 2γ

(
ũ ∧ ñ ∧ b̃ ∧ w̃

)
Conclusion

For any trajectory, parameterized by pathlength, we can form the curvature
state multivector

State = s+ ũ+ (ũ ∧ ũ′) + (ũ ∧ ũ′ ∧ ũ′′) + (ũ ∧ ũ′ ∧ ũ′′ ∧ ũ′′′) + ...

= s+ ~u+ κ (ũ ∧ ñ) + κ2τ
(
ũ ∧ ñ ∧ b̃

)
+ κ3τ 2γ

(
ũ ∧ ñ ∧ b̃ ∧ w̃

)
+ ...

While the derivatives, in general, are not orthogonal, from the cascaded
wedge products we can determine the local Frenet frame, as well as the values
for the Frenet curvatures.
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